
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations Thesis and Dissertation Collection

1992-06

A combinatorial approach to automated

LOFARGRAM analysis

Brahosky, Vance A.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/26922

Downloaded from NPS Archive: Calhoun

Urclass i f ied

SECURITY ClASS' c fi T on : S PAGE

REPORT DOCUMENTATION PAGE
I—

.vii Appro*?

d

\'8 Vo 0704 0188

a REPORT SEC^P;"Y CLASS'F CA'ON
Unci ass i f i ed

10 RES i =;C" VE VAP- NGS

:a SECuR.'Y CLASS f'CAT ON AUTHOR

2d DECLASSiFiCAT ON DOWNGRADING schedule

3 3 5'»3/L'. AVA A3_ ' >
:

- : -"

Approved for public release;
distribution is unlimited.

4 PERFORM. NG ORGANIZATION REPORT NUMBER(S) 5 MON "OP NG ORGAN.ZAT ON -.- - _ =
'

6a NAME OF PERFORMING OPGANZATiON

Naval Postcraduate School

bo OFF CE S v V3C
(if applicable)

7a NAVE OF VON "OP NG JPGAN.V." ;

Naval Postqraduate Schoo

6c ADDRESS [City. State, and ZIP Code)

Monterey, CA 939^3-5000

?d ADDRESS 'Gfy Stare and Zip Code)

Monterey, CA 939^3-5000

8a NAVE OF FUNDING SPONSOR NG
ORGANIZATION

So OFFiCE S'VBOi
(If idfjicable)

9 PROC-PEVENT NS'

Jc ADDRESS (Ory State, and ZiP Code)

PROGRAM
ELEVEN' NO

O.EC
\ *CCES3 : N NO

TITLE (Include Security Classification)

A COMBINATORIAL APPROACH TO AUTOMATED LOFARGRAM ANALYSIS

12 PERSONA. AoThOPiS)

Brahosky, Vance A,

3a T -pc O c REPORT
Mas te r ' s Thes i s

3d PME COVERED
ppOM tO

DATf Or PE 2OP" -Year Month Day!

1992, June 18

.: CO-

90

6 supplementary notation -r he v j ews ; n t h ; s thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Governnen

COSA- CODES

ELD

'8 S_3. EC r 'ER.MS 'Continue on -e^erse if necessa'y a^d identify by beck number)

LOFARGRAM; Graph Theoretic Tracker (GTT) ; Houch Transform;
Heuristic Search; Cluster Analysis; Feature Space;
Parameter Space

19 A&STP.ACT (Continue on reverse if necessary and identify by block number)

This thesis examines the combination of three algorithms: Graph Theoretic
Tracker (GTT), Hough Transform, and Heuristic Search to enhance the detection of

spectral tracks of underwater targets in LOFARGRAMS. Previous studies examined
these algorithms separately. Here, GTT is used as a pre -processor of the LOFARGRAM
display data to locate optimum paths of signals through noise. The line tonals in the

output image from GTT are then manipulated by the Hough Transform into clusters of

points in parameter space. A Heuristic Search sorting technique is employed to

determine cluster centers. These cluster centers are then reconstructed back into line

tonals using the inverse Hough Transform formula. The results of this thesis show
improvements by taking the Hough Transform of the original LOFARGRAM masked
by the output of GTT. The effect of background noise is offset by the accumulation in

the parameter space. Subsequently, the recovery of desired tonals is improved.

20 DISTRIBUTION AVAILABILITY OF ABSTRACT

E3<UNCLASSIFiED.'UNLIMITED SAME AS RPT qt'C USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified
22a NAME OF RESPONSIBLE 1ND1

Chin-Hwa lee

"Dual PHONE (Include Area Code)22b T£i FPHONE (Include

(408) 646-2190
22c OFF CE SYMBOL

EC/Le

DDForm 1473, JUN 86 Previous editions are obsolete

S/N 0102-LF-014-6603
i

SECURITY CLASS. PICA" ON OF This PAGE

Unci ass i f i ed

T2577?ii

Approved for public release; distribution is unlimited.

A Combinatorial Approach to

Automated LOFARGRAM Analysis

by

Vance A. Brahosky

Lieutenant , United States Navy

B.S.. Pennsylvania State University, 1985

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 1992

ABSTRACT

This thesis examines the combination of three algorithms: Graph Theoretic

Tracker (GTT), Hough Transform, and Heuristic Search to enhance the detection of

spectral tracks of underwater targets in LOFARGRAMS. Previous studies examined

these algorithms separately. Here, GTT is used as a pre-processor of the LOFARGRAM

display data to locate optimum paths of signals through noise. The line tonals in the

output image from GTT are then manipulated by the Hough Transform into clusters of

points in parameter space. A Heuristic Search sorting technique is employed to

determine cluster centers. These cluster centers are then reconstructed back into line

tonals using the inverse Hough Transform formula. The results of this thesis show

improvements by taking the Hough Transform of the original LOFARGRAM masked

by the output of GTT. The effect of background noise is offset by the accumulation in

the parameter space. Subsequently, the recovery of desired tonals is improved.

in

C.J

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. PREVIOUS WORK 2

C. THE DESCRIPTION OF THE PROBLEM 2

II. GRAPH THEORETIC TRACKER 6

A. THEORY 6

B. DEVELOPMENT OF THE ALGORITHM 6

C. IMPLEMENTATION OF GTT 10

1. Parameters Involved 10

2. Source Code 12

3. BEAM00.NRM Image 15

4. Detection Threshold 16

III. HOUGH TRANSFORM 20

A. THEORY 2

1. Hough Transform Algorithm 21

2. Properties and Illustration 21

3. Reconstruction 24

B. IMPLEMENTATION 24

1. Source Code 26

2. Output 27

IV

a. Test.dat 27

b. Tracks. b (Outfile.dat) 31

IV. HEURISTIC SEARCH 35

A. BACKGROUND 35

B. THEORY 3 6

1. Cost Function 36

C. IMPLEMENTATION 41

1. Source Code 41

a. HS.FOR Program 41

b. RECONST.FOR Program 42

2. Testing 43

a. Threshold 30% 43

b. Threshold 20% 46

c. Threshold 19% 48

3. Improvements 50

a. Threshold 17% 50

V. CONCLUSIONS AND RECOMMENDATIONS 54

A. GENERAL 54

1. GTT Algorithm 54

2. Hough Transform Algorithm 54

3. Heuristic Search Algorithm 55

B. RECOMMENDATIONS 55

APPENDIX A: GRAPH THEORETIC TRACKER SOURCE CODE 57

v

APPENDIX B: HOUGH TRANSFORM SOURCE CODE 66

APPENDIX C. HEURISTIC SEARCH SOURCE CODE 70

APPENDIX D: MULTIPLY. FOR SOURCE CODE 7 6

APPENDIX E: HOUGH TRANSFORM (GRAY SCALE) SOURCE CODE . 78

LIST OF REFERENCES 82

INITIAL DISTRIBUTION LIST 83

VI

I . INTRODUCTION

A . BACKGROUND

As sonar systems continue to increase in size and

complexity, operators are in danger of being overwhelmed by

the information presented in displayed data. There is a need

for algorithms that can support automatic detection and

tracking of signals of interest. In military applications,

improvements in the area of detection of signals in noise are

always of continuing interest. Concerning Anti-Submarine

Warfare (ASW), one classical method of displaying passively

received acoustical data is the LOFARGRAM. LOFAR is an acronym

for Low Freguency Analysis and Recording. In the form of a

waterfall display, acoustical data is presented spectrally

with the y-axis representing time and the x-axis representing

freguency. In the freguency domain, man-made signals possess

a higher power content when they are compared to background

noise. Because the shading of the pixels in the LOFARGRAM is

power content dependent, pixels with higher power appear

brighter

.

B. PREVIOUS WORK

A broad spectrum of techniques have been applied to

detect acoustic signals passively in ocean noise. Two

previously studied algorithms include the Graph Theoretic

Tracker (GTT) and the Hough transform. Both algorithms have

been examined in detail using synthetic test sets. Ross [Ref.

1] gives a detailed analysis of GTT while Wang's study is

devoted to the Hough transform [Ref. 2]. The main advantages

of these algorithms include: requiring no a priori knowledge

of location or numbers of signals to detect; having the

ability to detect single, multiple, crossing, and swept

tonals; producing output suitable for immediate display; and

providing accurate frequency estimates. The study here is

aimed at improving the overall performance of tonal tracking.

C. THE DESCRIPTION OF THE PROBLEM

This thesis investigates the application of the GTT and

Hough transform algorithms on a real data set provided by the

Naval Research Laboratory (NRL) . The use of synthetic data

sets in previous studies allow tighter control of

experimentation and is therefore well suited for quantitative

analysis. However, in this thesis, the performance of these

algorithms using real data provides a more accurate

qualitative evaluation.

A tandem combination of GTT and Hough is used to maximize

their respective advantages and minimize their inherent

disadvantages. A final step involves the use of a heuristic

search sorting technique. This step determines which clusters

in the parameter space of the Hough transform should be

reconstructed back, into line tonals in the feature space.

BEAM00.BIN is a LOFARGRAM provided by NRL . Displayed in

Figure 1, BEAM00.BIN is a 256x256 byte image of three stable

tonals and one swept tonal at a low signal-to-noise ratio

(SNR). In order to keep this thesis at the "UNCLASSIFIED"

level, both the origin and frequency content of this LOFARGRAM

are not discussed and in fact are unknown to the author.

Figure 1. LOFARGRAM BEAM00.BIN

The direction of this thesis is best illustrated by the

flow graph presented in Figure 2. Because the GTT algorithm

operates most efficiently with normalized data sets,

BEAMOO.NRM, the normalized version of BEAM00.BIN, is used as

the input LOFARGRAM into GTT.

The output file from GTT, TRACKS. B, is then utilized as

input for the Hough transform. After the image has been

transformed into clusters in parameter space, a heuristic

search sort is performed to determine which clusters are

suitable for reconstruction. Finally, the inverse of the

Hough transform is employed to convert selected clusters back

into line tonals.

This thesis consists of five chapters. Chapter I provides

an introductory description of the track detection problem.

Chapter II presents a description and implementation of the

GTT algorithm. Chapter III emphasizes the Hough transform

method. Chapter IV details both the original and improved

heuristic search algorithm. Finally, Chapter V includes

conclusions and recommendations for further study.

BEAMOO.BIN

Normalization

BEAMOO.NRM

GTT

(TRACKS. B)

Hough
Transform

Heuristic

Search

Reconstruction

Figure 2. Procedure Flow Graph in this Thesis

II. GRAPH THEORETIC TRACKER

A. THEORY

Graph Theoretic Tracker (GTT), developed by L.J. Wu and

R.A. McConnell at Naval Research Laboratory (NRL), Washington,

D.C. , is based on graph partition theory [Ref. 3]. Jensen

developed this optimum network partitioning theory whereby a

set of elements are partitioned in such a way that a pre-

defined cost function is optimized [Ref. 4].

B. DEVELOPMENT OF THE ALGORITHM

Applied to LOFARGRAM analysis, the track detection

problem is simply translated into a graph partitioning

problem. Optimum partitioning is utilized to extract

features such as prominent line tonals. Each time line of

the LOFARGRAM is mapped onto a graph where the individual

pixels or frequency bins of the image correspond to nodes in

the graph. According to Wu and Curtis [Ref. 3],

...the partitioning is accomplished through the orderly
enumeration of all possible partitions of a graph
followed by a recursive search using dynamic programming
methods. The final partition generated by this algorithm
is optimal with respect to some objective cost function
used to drive the dynamic programming search.

Sample partitions of a graph are shown in Figure 3.

Figure 3. Translation of
LOFARGRAM to GTT
Graph

In order to maintain connectivity requirements, two dummy

nodes are used as end nodes. Line tonals in the LOFARGRAM

will appear as cuts through the graph. In order to detect

these tonals, the optimum partitioning algorithm utilizes a

cost function based on the signal-to-noise ratio (SNR). The

noise estimate needed for this cost function is found by

calculating the mean weight of the nodes between pairs of

tracks or cuts. This is shown graphically in Figure 4.

t.
t

Nodes ! noise J

-§»— —

&

$$-

Frequency

Figure 4. Cost Function in GTT

Symbolically, the cost function is defined as follows:

cfij = y°ij - i\i> (2,i)

where the signal estimate, rj if is determined by integrating

the graph weights along the track path, t if and the noise

estimate, a^, weighted by a scalar constant, y, is obtained

by calculating the mean weight of the nodes between t
i
and t-;

the scalar constant, y, can be used as a means to set

detection threshold. The cost function, cf^, is simply the

cost of a particular pair of cuts through the graph. By

summing all possible cuts, the total cost can be determined:

tot&lcost = ^ C^ij
1

(2.2)

Figure 5. Various Possible Tracks

C. IMPLEMENTATION OF GTT

1. Parameters Involved

Because the number of potential signals in a typical

LOFARGRAM can be quite large, graph partitioning processing

times can become unreasonable. By limiting the number of time

lines of data processed, GTT can produce output in an

acceptable time period. This is achieved by limiting the

height and width of the processing window. Currently the

variables used to control this window include K, L, and P. K

establishes the maximum number of pixels or frequency bins

that a track can deviate from one time line of data to the

next. A maximum value of four is allowed for K indicating

that a track has nine possible positions in the succeeding

line, { -4, -3, -2 , -1 , 0, +1 , +2 , +3, +4 } , relative to its current

position

.

10

The parameter L determines the height of the

processing window, limiting the number of lines of data to be

partitioned. A maximum of three lines is permitted. P

defines the width of the processing window and represents the

number of frequency bins or pixels per time line. The maximum

value allowed for this parameter is 512. By using these

constraints, the number of possible cuts, N, evaluated reduces

to

N = P(2K + 1)
L - 1 < < 2 LP

- 2 (2.5)

For comparison, Table 1 shows the number of cuts

analyzed for a 2x256 window of data from BEAM00.BIN with the

number of cuts performed if the maximum values for all

parameters is used.

Table 1. COMPARISON OF CUTS

2x256 window of data

P = 256

K = 1

L = 2

N = 768

maximum values allowed

P = 512

K = 4

L = 3

N = 41472

11

2 . Source Code

The software implementation of GTT, provided as

Appendix A, contains the following programs, listed in the

order in which they are used.

• MAIN.C

• PART.H

• INITIAL.

C

• GENNODE.C

• UPDATE.

C

• PARTIT.C

• LIBRARY.

C

In order to take full advantage of modularity inherent

to the C programming language, the GTT algorithm is

implemented as a main program, MAIN.C, calling five separate

source files. PART.H is provided as a header file to

establish definitions of and limitations on the variables

used. A graphical depiction of GTT activities is shown in the

flow chart provided in Figure 6.

12

Read in Image (initial.c

)

Build tree (gennode.c

)

read LxP window of

pixels into weight (update.c

)

array

establish weighted

noise and signal (partit.c

)

estimate arrays

partition graph

output tracks.b
(library.c

)

Figure 6. GTT Flow Chart

13

Using command line inputs, INITIAL. C determines if the

parameter K, L, and P are within required limits and reads the

LOFARGRAM in image format. GENNODE . C is then called to build

the tree that will be graph partitioned. This module maps

individual frequency bins in the display image onto nodes in

a graph. In the main loop of MAIN.C, GTT successively

evaluates an LxP window of data as a graph to be partitioned.

Within this window, GTT attempts to maximize the total signal

while minimizing the noise. The output from this window is a

set of cuts that represent the best potential tracks. Within

the main loop, UPDATE. C is called to read this LxP window of

pixels into a weight array. Graph weights for the nodes are

determined by the pixel intensity representing those nodes.

UPDATE . C then constructs arrays for the weighted noise

estimate and signal estimate. When this is completed,

PARTIT.C is called to partition the graph based on the cost

function (see equation 2.2). Finally, LIBRARY. C receives the

LxP partitioned graph and outputs this as TRACKS. B. The main

loop of MAIN.C is traversed again using the next LxP window of

data from the input file. The output file, TRACKS. B, is

displayed in the same format as the input LOFARGRAM, which is

a waterfall display of frequency versus time. Contrary to the

input file which is displayed in 256 gray levels, TRACKS. B is

binary with the black background representing the absence of

signal and white portraying the presence of signal.

14

For clarity in display, the inverse of the image of

TRACKS. B is used in the following figures. The GTT output of

BEAM00.BIN, shown in Figure 7 , was obtained with the parameter

settings of K=l, L=2 , and P=256. Although the GTT output of

BEAM00.BIN displays a large number of false alarms or noise,

the three constant tonals and the swept tonal are visibly

evident

.

i

1

' '• '

'

•
i . ! i

' f, • ',

i

A ',

'„•';
•

•;

\ "
I j

Figure 7. GTT Output,
TRACKS. B, with
Y = 6

3. BEAMOO.NRM Image

The LOFARGRAM BEAMOO.NRM is the normalized version of

BEAM00.BIN. BEAMOO.NRM is used as the input data set for GTT.

To determine the pattern of normalization, the IM-4000 Image

Manager is used to analyze the histograms of both BEAM00.BIN

and BEAMOO.NRM. Containing the full spectrum of gray scales

0-255, BEAM00.BIN possesses a mean pixel value of 161.

15

BEAMOO.NRM however is normalized to 64 gray scales with a mean

pixel intensity of seven. In order to reproduce BEAMOO.NRM,

the following standard normalization equation is used:

Norm Imag = Old Imag* (
; ,

255
, :

-) . (2.6)— — max_pixei - minjjixei

GTT however does not function properly with the

normalized image. Further study reveals that BEAMOO.NRM is

probably constructed by normalizing each record or time line

of data instead of global normalization of the entire image.

Instead of analyzing this normalization further, this thesis

concentrates on manipulating the output of GTT, using

BEAMOO.NRM as input.

4. Detection Threshold

Mentioned earlier, the detection threshold can be

manipulated by changing y in the cost function calculation,

equation (2.1). This can be achieved by numerically changing

the scalar constant used in the function, COSTFUNCTION(i, j) ,

of PARTIT.C. Figures 8, 9, 10 , and 11 show the effects of

varying y from five to ten.

16

'•: • '.i
•

"

,
. i

,. \

••• » „o

;

v >:: i

•••"

'. A ..:.

i: 1
' :

;v

. ;

..;•"

./ '.. :•-• >

• > .
i

.

.

• • U V . /. . >

-"XM
' 'l

'
'

)'• '.

-;s
k

.
,,..; •:;•;

/ . ov-';. :•":.' .•/•.••

. . .. : i ••.... s .• •

1*
•'';•*

I

. . .• • •.'
i ^ '

i

Figure 8. Effect of Threshold
Y = 5

1 1S
'i,

i

,; ;
.

'.(,,
i

. •, . ,

\

"

:

'"^ "':
1 i

* I*
'

'i •
.

• \

./ . >,

\. .

f ...
.

t

\ v ,
• .

'

1

,

.
',. '

. .

V, 1

' '
1 s

.• /. i

/ '
S i , t

'

1 '

"

t' i

' y t .

II •

1

• " ' ..

'

,

'•<, ."'

1 ' '

"

1
.'

i
'.•.<

i

\ ,

j'." \ 1

*
.

•

'

i

i
• ' • '

Figure 9. Effect of Threshold
Y = 6

17

•'• A

"i i

Figure 10. Effect of Threshold
Y = 7

Figure 11. Effect of Threshold
Y = 10

18

As seen in these figures, the decision to set a

detection threshold, y , at a certain level involves trading

off detection for false alarms. If the threshold is set at a

low value, as it is in Figure 8, the signal becomes more

evident at the expense of introducing a large number of false

alarms. As the threshold is increased to values of six, seven

and finally ten in Figures 9, 10, and 11, the number of false

alarms diminishes but the probability of miss increases. From

visual observation, a detection threshold of six provides the

best output.

The output of GTT shows the detection of prominent

points along the track, but those points tend to be

discontinuous. The next processing step involving the Hough

transform is intended to detect potential line tonals existing

in the output of GTT. The Hough transform achieves this by

determining which disconnected points exhibit collinear

tendencies

.

19

III. HOUGH TRANSFORM

A. THEORY

One method of detecting the presence of line and curve

segments in images is the Hough transform. If a line can be

mathematically defined by the equation y = mx + b, then the

infinite set of points that comprise this line all possess the

same value of slope m and intercept b. The Hough transform

uses this fact to map collinear or nearly collinear points in

the (x,y) plane of the image space or feature space to the

(m,b) coordinate of parameter space. One obvious discrepancy

occurs when the line assumes a vertical orientation resulting

in the slope approaching an infinite magnitude. This

singularity can be avoided by using the normal

parameterization of a line first suggested by Duda and Hart

[Ref. 6]. The equation then appears in the following form:

p = xcose + yslne , 0_©_^ (3.1)

Using the parametric equation of a straight line, each

collinear (x,y) coordinate will map to a sinusoid in parameter

space. After transformation, an infinite number of sinusoids

are generated, each intersecting at the point in parameter

space corresponding to the slope and intercept of the line.

20

1. Hough Transform Algorithm

The Hough transform adheres to the algorithm displayed

in Table 2 [Ref . 7]

.

Table 2. HOUGH TRANSFORM ALGORITHM

For each (x,y) £ P do

For 6 = 0,/r, a6 do

p = xcos6 + ysin6

H(8,p) = H(6,p) + 1

end do

end do

2. Properties and Illustration

Using the normal parameterization of a line, the Hough

transform method yields four main properties [Ref. 8]:

• A point in the feature space corresponds to a sinusoidal
curve in the parameter space.

• A point in the parameter space corresponds to a line in
the feature space.

• Points lying along a line in the feature space correspond
to sinusoidal curves through a common point in the
parameter space.

21

• Points lying along a sinusoidal curve in the parameter
space correspond to lines through a common point in the
feature space.

These properties are demonstrated using the illustration shown

in Figures 12 and 13.

y

p

\ 2

2\ p
\ 3

3\

Figure 12. Test Image for the
Hough Transform

22

4-

O

— 2«

— 4-

CD SO
theto

1 oo 1 SO

Figure 13. Sinusoids in Parameter Space from Collinear
Points

The line segment, displayed in Figure 12, is used as

a test image. The three indicated collinear points are

extracted and used to generate the three sinusoids displayed

in Figure 13. The intersection of the these three sinusoids

in parameter space demonstrates the attractiveness of the

Hough transform in locating collinear points in feature space.

One only has to determine those points in parameter space

where a large number of intersections occur to locate lines in

feature space. The parameter space is viewed as a two

dimensional array constructed by quantizing p and into

cells. Each cell is assigned an accumulated value. Equation

(3.1) maps each collinear point to a sinusoid in parameter

space. Cells lying along the resultant sinusoid are

incremented by one.

23

After the image has been transformed, accumulator

cells having high counts indicate intersecting curves in

parameter space and therefore lines in feature space [Ref. 7].

3 . Reconstruction

After transformation, the accumulator array is

evaluated to locate those cells possessing high counts. The

problem of reconstructing the cluster center (p,6) is solved

by performing the inverse of equation (3.1). Solving equation

(3.1) for x yields

x = p - y(-^iB|)
. (3.2)

cos0

In order to implement this algorithm in a computer program, a

reference point located at the center of the image is needed.

Using a reference point simply introduces an offset (x /V
)

into equation (3.1):

p = (x-x)cobQ + (y-y)sin6. (3.3)

Solving this equation for x yields

m p - (y-y) sine
° cos0

B. IMPLEMENTATION

The Hough transform is implemented using HOUGH. FOR, a

FORTRAN program written to take advantage of the points

mentioned in Section A. 2.

24

Previous programs of the Hough transform in [Ref. 8] and

in [Ref. 2] involve the detection of signals present in noise

and are therefore gray scale oriented. Because the output of

GTT is binary, a new program, HOUGH. FOR, is used which is

provided in Appendix B. The flow chart in Figure 14 depicts

the flow of operation from output of GTT to tonal

reconstruction

.

read in / gttconv.for

)

TRACKS. B

establish

reference point

Xo.Yo

Hough

Transform

increment

accumulator

threshold

accumulator

Reconstruction

Figure 14. Hough Transform
Flow Chart

25

1 . Source Code

Because the output of GTT is a fixed length 128x512

byte file, a pre-filter is needed to convert TRACKS. B into a

256x256 byte array. The FORTRAN program, GTTCONV.FOR, that

performs this operation is listed in Table 3.

Table 3. GTTCONV.FOR LISTING

program goutconv
c This program takes a fixed length 128x512 byte
c output file from the GTT algorithm, which is
c in binary format, and converts it into a 256x256
c byte array. The output file, OUTFILE.DAT, is
c now suitable for input into the Hough Transform
c algorithm.

byte bl_image(128,512) , b2_image(256 , 256

)

integer i_image(256, 256

)

open (unit =1 , name= ' t racks .

b
'

,status='old'

,

* access= ' direct
'

, recordsize=128 ,maxrec=128

)

open(unit=2 , f ile= ' outf ile . dat
'

, status= ' new
'

,

* access=' direct', recordsize=64 ,maxrec=256

)

do i=l,128
read(1

' i)
(bl_image(i,j),j=l,512)

do j =1,25

6

b2_image((i*2) -1, j
) =bl_image(i, j

)

end do

do j=257,512
b2_image(i*2,j-256) =bl_image (i , j

)

end do
end do

do i=l,256
write (2

' i) (b2_image(i, j) ,
j= 1,25 6)

end do
close(unit=l

)

close(unit=2

)

end

26

Subroutine h in HOUGH . FOR performs the Hough

transform. is incremented from to n radians in intervals

of 1/256 radians. For each nonzero pixel in the image, the

Hough transform equation is executed and each cell in the

accumulator array that is traversed by the resulting sinusoid

is incremented by one. After performing the Hough transform,

the accumulator array is thresholded and normalized for

display on the IM-4000 Image Manager image processing system.

This image processor requires that the scale for normalization

range be from to 243. Levels 244 to 255 are internally

reserved [Ref. 9]. Cells in the accumulator array greater

than or equal to a user defined threshold will map to the most

likely set of collinear points in feature space. Subroutine

R in HOUGH . FOR is then called to reconstruct lines from

cluster points in the accumulator array. After determining

the number of cluster points and their location, (p,0), the

reconstruction equation (3.4) is used.

2 . Output

a. Test.dat

The test image, TEST.DAT, shown in Figure 15, is

used as the input file for the Hough transform. The result of

this transform is shown in Figure 16.

27

Figure 15. Test Image in
Space Domain,
TEST. DAT

Figure 16. Hough Transform of
TEST. DAT

28

As predicted, the sinusoids intersect at a common

(p,0) location. The reconstruction of this Hough transformed

image is displayed in Figure 17, which demonstrates that in

the absence of noise the Hough transform can faithfully and

easily reproduce the line test image. The accumulator array

for the Hough transform contains one cell that possesses the

highest number of sinusoids traversing it, and therefore the

highest count. In three dimensions, this appears as a lone

peak rising from a plane defined by p and 0. The 3-D plot of

the Hough transform in Figure 16 is shown in Figure 18.

29

Figure 17. Reconstructed Image
of TEST. DAT

Figure 18. 3-D Plot of the Hough Transform
of TEST. DAT

30

b. Tracks. b (Outfile.dat)

The output of GTT, TRACKS. B, shown in Figure 7, is

converted, as discussed previously, into OUTFILE.DAT and used

as input for HOUGH. FOR. The Hough transform of this file is

displayed in Figure 19. Because TRACKS. B contains numerous

false alarms in the form of small line segments, the Hough

transform appears to be extremely noisy and convoluted. After

the accumulator array for this transform is thresholded at a

value of 100%, reconstruction produces the single most

dominant tonal in the LOFARGRAM, which is shown in Figure 20.

Figure 19. Hough Transform of
GTT Results,
TRACKS.

B

31

Figure 20. Reconstructed
Dominant Tonal,
with 100%
Threshold, of
Figure 19

The reconstruction subroutine in HOUGH . FOR did not

sense the less evident tonals because the accumulator cells

associated with those lines contain counts much lower than the

cell linked to the most prevalent tonal. This is evident in

Figure 21 which shows the 3-D plot of Figure 19.

32

Figure 21. 3-D Plot of the Hough Transform
of GTT Results, TRACKS .

B

Even with a threshold value of 70%, the most

dominant tonal is still the only one reconstructed, as shown

in Figure 22. Clearly then, an alternative is required to

extract those cluster centers associated with tonals of

interest in the LOFARGRAM.

33

Figure 22. Reconstructed
Dominant Tonal,
with 70% Threshold,
of Figure 19

The issue is how to find relevant cluster centers

in the parameter space of the Hough transform. In the next

chapter, a heuristic (greedy) type of algorithm is developed

to locate cluster centers.

34

IV. HEURISTIC SEARCH

A . BACKGROUND

Clearly a simple thresholding operation is insufficient to

reconstruct all applicable tonals from the accumulator array.

A method needs to be developed to effectively sort the

accumulator array and reconstruct lines from accumulator cells

of interest. Two methods, LAS cluster technique and sorting

technique, have been previously studied as a means to perform

cluster analysis [Ref. 2]. The Land Analysis System (LAS) is

a software package encompassing a variety of functions

designed to process and analyze image data. Based on a

Digital Equipment Corporation (DEC) VAX 11/780 computer, the

LAS runs under the VMS operating system [Ref. 10]. Three

programs of interest within the multispectral processing

functions of LAS include HINDU, ISOCLASS, and KMEANS . The

HINDU program performs an unsupervised classification based on

multidimensional histograms. ISOCLASS performs an unsupervised

cluster classification and KMEAN groups input image pixel

values into a predetermined number of clusters. In addition

to applying a sort based on threshold, Wang studied these

three programs as an alternative cluster analysis method.

This thesis examines a possible third procedure, heuristic

search

.

35

B. THEORY

The heuristic search method involves scanning the

accumulator array and determining the location of groups or

clusters of cells or points which possess values equal to or

greater than a user defined threshold. The threshold is based

on percentage with 100% assigned to the cell with the highest

count. As the search proceeds, the clusters are condensed

into a specific cluster of cells which will then be

reconstructed. In order to implement this procedure, a cost

function is defined.

1. Cost Function

The total cost function is formed from the addition of

a cost function based on the number of points (cost
N) and a

cost function based on distances between points (cost
D
).

Symbolically, these functions are illustrated below.

cost,, = Ka N (4.1)

costD = Kd D = £E u
i

- Xj\ (4 .2)

totalcost = costN + co8tD (4.3)

Where K
n
and Kd are scalar constants used to weight cost

N
and

cost
D , respectively, u

i
represents cluster group i and x-

represents the j points within cluster group i. An

illustration shown in Figures 23 through 26 is used to

demonstrate the cost function.

36

Figure 23 shows an example of an accumulator array

with cells containing values at or above the threshold

depicted as black points on the grid. Numbers listed

vertically mark rows in the array; horizontally listed numbers

mark columns. The black x's indicate cluster groups.

56 65 71,,,"'',,,'
92

97

+H-

m
:tt£E3

'i i li i M

I
. . . i .

I
I

, M '

i I PP^P
i

I I I !
I II i

' ' I I
|

S~

-m-

106 :

i i i i i i I i i n i i I i l i i

+
All 111 US

Figure 23. Test Image of
Heuristic Search
with N=4 D=0.0

At this point in the calculations, N equals four and

a marker is placed on each point yielding a distance from each

marker to its respective point zero. The minimum distance

between markers is now computed, and a new marker is placed at

the mid-point between the two closest markers. In Figure 24,

N now equals three, and the distance cost associated with the

new marker is calculated. The distance used in this

calculation is the distance from the new marker to each of the

original cluster markers. At the completion of each state,

the total cost is computed and tabulated.

37

Figure 24. Test Image of
Heuristic Search
with N=3 D=5.0

56 65 71

-H-4

92 i
I i 1 1 1 1 1 1 1

1

1

1

'

1 1
1

1

.'.

I
i

1 1
i

; I
i£n

i

'

I Mii i l l lll iil l!;

Figure 25. Test Image of
Heuristic Search
with N=2 D=11.32

38

Figure 26. Test Image of
Heuristic Search
with N=l D=34.81

When all states have been evaluated, the state

possessing the minimum overall cost is reconstructed back into

line tonals in feature space. The three cost functions are

shown in Figures 27, 28, and 29. The total cost function for

the previous example is plotted against states one through

four

.

It is evident that state two representing the two

cluster group situation is the lowest cost configuration which

would be the answer for the number of reconstructed clusters.

39

8

Figure 27. Cost
N

3 -

2

Figure 28. Cost.

2 3
cluste rs (m)

3
iters (rsl)

Figure 29. Total Cost

40

After experimentation, scalar constants K
n
=1.0 and

K
d
=0.1 were chosen to ensure that, within the total cost

function, cost
N

is properly offset by cost
D

.

C. IMPLEMENTATION

1. Source Code

The Heuristic Search method, written in the FORTRAN

programming language, is provided in Appendix C as HS.FOR.

This program takes the 256x256 accumulator array constructed

in HOUGH . FOR as input and determines the minimum cost

configuration. This configuration is then provided as input

for RECONST.FOR which reconstructs the optimal minimum cost

configured accumulator array back into lines in feature space.

a. HS.FOR Program

It is important to remember that the image

supplied to HS.FOR has already been thresholded by HOUGH. FOR.

Pixels containing values equal to greater than the threshold

are retained and those below the threshold are set to zero

(pixel value equates to the color black for display

purposes)

.

After conversion from a 256x256 byte image into an

integer format, the x,y locations of the N non-zero pixels are

stored in four lxN arrays: S_PEAK_ROW, S_PEAK_COL, C_PEAK_ROW,

and C PEAK COL.

41

S_PEAK_ROW and S_PEAK_COL store values from the

input sample image and remain unchanged as the reference

image. C_PEAK_ROW and C_PEAK_COL represent the cluster image

and store the locations of the current cluster groups. The

length of c_peak_row and c_peak_col arrays will change as the

program progresses from state n=N non-zero pixel or peaks to

state n=l. Initially, these four arrays are identical.

Within the main program loop, subroutine CENTROID

performs the majority of the processing on the cluster image.

Seguentially , this subroutine determines the minimum distance

between peaks and places a new marker at the mid-point of the

two peaks involved in the minimum distance calculation. It

adjusts c_peak_row and c_peak_col arrays to include the newly

calculated midpoint and determines the distance factor to be

used in the distance cost portion of the total cost function.

It then performs the next set of distance calculations as the

loop is executed again. After all states have been evaluated,

subroutine min_cost is called to determine and output the

cluster group configuration representing the minimum total

cost

.

fa. RECONST.FOR Program

This program takes the output from HS.FOR as input

and performs reconstruction calculations nearly identical to

those found in HOUGH. FOR.

42

The main difference is that the pixels being

reconstructed now represent the cluster configuration of the

minimum cost.

2. Testing

a. Threshold 30%

At a threshold of 30% x ten cells in the

accumulator array are encountered and are listed in Table 4.

Table 4. ACCUMULATOR ARRAY CELLS OF
HOUGH TRANSFORM PARAMETER SPACE

Cells (Peaks) Row Column

2 256 127

3 253 128

4 254 128

5 255 128

6 256 128

7 1 129

8 2 129

9 3 129

10 4 130

After reconstruction from parameter space to

feature space, these ten peaks yield ten overlapping lines

shown in Figure 30, depicting the most dominant tonal in the

original LOFARGRAM.

43

Figure 30. Reconstructed
Dominant Tonal with
30% Threshold of
Figure 19

In order to implement the heuristic search

cluster analysis, the image shown in Figure 30 is used as the

input image for HS.FOR. The ten lines correspond to ten

states initially. As the program proceeds from state n=10 to

state n=l, cost
N

, cost
D

, and total cost are computed. Cost

function values for this example are listed in Table 5.

44

Table 5. COST FUNCTION VALUES FROM
FIGURES 27, 28, AND 29

state, n cost
N

cost
D

total

cost

10 10.0 0.0000 10.0000

9 9.0 1.0000 9.0000

8 8.0 2.0000 8.2000

7 7.0 3.0000 7.3000

6 6.0 4.0000 6.4000

5 5.0 5.4142 5.5414

4 4.0 6.8284 4.6828

3 3.0 8.2426 3.8243

2 2.0 10.2426 3.0243

1 1.0 1265.051 127 .051

It is evident that state n=2 represents the

minimum cost configuration. Two peaks in the accumulator

array result in two lines in feature space as shown in

Figure 31.

45

Figure 31. Reconstruction
of Figure 30
after Heuristic
Search

b. Threshold 20%

When the threshold is reduced to 20%, the number

of accumulator array cells or peaks meeting the threshold

criteria is increased to 32. The 32 lines reconstructed

from these pixels without heuristic search are shown in

Figure 32.

Figure 32. Reconstructed
Tonals with
20% Threshold
of Figure 19

46

The sloping line to the far left in the image

represents the top portion of the slowly varying curved

tonal in the original LOFARGRAM. The next set of vertical

lines depicts the less evident tonals while the majority of

lines are centered around the position of the dominant

tonal. The two vertical lines to the far right are

spurious and represent noise pixels that met the threshold

criteria in the accumulator array.

The heuristic search yields a minimum cost state

of eight cells, and the reconstruction of which is shown in

Figure 33. The large number of lines near the dominant

tonal has been reduced to three. It is interesting to note

that the two spurious lines associated with noise are

retained.

/

1

Figure 33. Reconstruction of
Figure 32 after
Heuristic Search

47

c. Threshold 19%

Lowering the threshold to 19% yields 40 peaks in

the accumulator array corresponding to the 40 lines shown

in the image in Figure 34.

i—

r

Figure 34. Reconstructed
Tonals with 19%
Threshold of
Figure 19

New additions from the 20% threshold image include

the vertical line to the far left representing another

spurious noise cell in the accumulator array. It also

includes two more sloping lines depicting the mid and lower

portions of the swept tonal from BEAM00.BIN.

48

Eleven cells represent the minimum cost state in

the accumulator array resulting in 11 lines reconstructed

in feature space as shown in Figure 35.

Figure 35 . Reconstruction of
Figure 34 after
Heuristic Search

The spurious noise lines have unfortunately been

preserved while the majority of lines clustered around

the dominant tonal position have been reduced to three.

It is evident that the heuristic search cluster analysis,

although working well, needs to be improved.

49

3 . Improvements

In order to reduce the effects of noise while

retaining those cells in the accumulator array associated

with the signal tonals, the input image for the Hough

transform is subjected to further processing. MULTIPLY. FOR,

provided in Appendix D, is used to multiply the output of

GTT, TRACKS. B, with the original LOFARGRAM, BEAM00.BIN. The

resultant image is a replica of TRACKS. B with the

exeception that every non-zero pixel contains the value of

BEAM00.BIN at that (i , j) location . This image now emphasizes

the signal tonals. The output of MULTIPLY . FOR, OUTIMG.DAT,

is now used as the input image for the Hough transform.

Because HOUGH . FOR is binary image oriented, changes are

made in the source code of this program to accomodate the

0-255 gray scale orientation of OUTIMG.DAT. These changes

are listed as HOUGH_G.FOR in Appendix E.

a. Threshold 17%

At a threshold of 17%, 38 peaks in the accumulator

array meet the threshold criteria. When this array is fed

into the heuristic search algorithm, HS.FOR, nine peaks are

retained for reconstruction. The output of HOUGH_G.FOR is

shown in Figure 36; the output of HS.FOR is depicted in

Figure 37.

50

Figure 36. Reconstructed
Tonals with 17%
Threshold of
Figure 19

Figure 37. Reconstruction of
Figure 36 after
Heuristic Search

51

Figure 37 shows that the manipulation of the input

image by the multiplication of TRACKS. B and BEAM00.BIN

results in an output image from heuristic search where the

main, secondary, and portions of the swept tonal are

reconstructed without the introduction of noise. The

threshold is then reduced to 16% resulting in 52 peaks

meeting the threshold criteria. After the heuristic search

is completed, 11 peaks are retained which reconstruct 11

lines in feature space. These images are shown in Figures

38 and 39.

.' / i

Figure 38. Reconstructed
Tonals with 16%
Threshold of
Figure 19

52

Figure 39. Reconstruction of
Figure 38 after
Heuristic Search

Again the main, secondary, and swept tonals are

retained. However, the two vertical lines to the far right

in Figure 39 are spurious resulting from two noise cells in

the accumulator array passing the threshold criteria.

With the proposed manipulation, it is obvious that more

line fragments of desired tonals can be extracted out of

the original image.

53

V. CONCLUSIONS AND RECOMMENDATIONS

A. GENERAL

This thesis has presented an examination of the

combination of three algorithms: GTT, Hough Transform, and

Heuristic Search to enhance the detection of spectral tracks

of underwater objects. Because signals of interest are best

visualized using LOFARGRAMs , LOFARGRAM analysis remains an

integral part of tracking in the frequency domain. The

combined approach of the application of these algorithms is

used to take full advantage of their respective

characteristics. Conclusions drawn from this research are

listed below for each of the three algorithms.

1. GTT Algorithm

• Because the output is already in the form of potential
tracks, it can be used for further processing.

• This algorithm is able to distinguish between connected
signals and relatively poorly connected noise.

• GTT can process multiple stable tonals clearly.

2. Hough Transform Algorithm

• This transform can extract desired line fragments of
stable and sweeping tonals from planar point sets.

• The Hough transform can handle spectral tracks buried in
heavy background noise.

54

• This algorithm can operate efficiently on both binary
and gray scale images.

3. Heuristic Search Algorithm

• Heuristic Search provides an easily understood
alternative to LAS routines and sorting technique for
cluster analysis.

• This algorithm provides a search foundation for further
image processing techniques such as simulated annealing.

B. RECOMMENDATIONS

Several unresolved problems remain at the conclusion of

this thesis. The cost function used in determining which

cluster(s) to reconstruct in the heuristic search algorithm

needs refinement. Presently, only the number of peaks and

distances between peaks are considered. One possible

improvement might include the addition of a height function

which would favor those cells in the accumulator array with

higher counts. This could offset the effects of noise and

emphasize the desired tonals in the LOFARGRAM. A second

recommendation involves expanding heuristic search into the

simulated annealing algorithm. Simulated annealing is very

effective in determining the global optimal solution and could

be used in cluster analysis by finding the optimal minimum

solution to the cost function.

55

To operate effectively, the simulated annealing algorithm

needs to be given an initial guess of the location of

potential tracks. The fragmented output from GTT is not

suitable as an input state for simulated annealing. By using

the Hough transform to convert the discontinuous points in

GTT ' s output to line tonals, an initial guess can be provided

for simulated annealing which is close to the actual position

of the tonals in the original LOFARGRAM. Research has been

conducted to apply the technigue of simulated annealing to

sonar track detection, but it only involved the use of

laboratory generated synthetic data sets [Ref. 11]•

56

APPENDIX A: GRAPH THEORETIC TRACKER SOURCE CODE

MAIN.C

#define MAIN
#include <stdio.h>
#include <time.h>
#include <signal.h>
#include "part.h"

main(argc, argv
)

int argc;
char *argv[]

;

{

int line=0, i;

long starttime, stoptime;
FILE *initialise() , *infile;
VERTEX lastnode, GenerateNodes ()

;

void writepart(), partition(), update(),
DumpNodes(), DumpTable();

/* Body of Program */
/*******************/
(void) printf ("%s\n\n", verid);
infile = initialise(argc, argv);
(void) printf ("Building tree . ..\n");
lastnode = GenerateNodes ()

;

(void) printf ("Nodes=%d\n\n" , lastnode);

for(;;) {

line++;
update(lastnode, infile)

;

if (feof (infile
)

) break;

(void) printf ("Processing group %3d",line);
(void) time(&starttime)

;

partition (lastnode)

;

(void) time(Sstoptirae)

;

stoptime -= starttime;
(void)

printf (" (%21d:%21d)\n" , stoptime/60 , stoptime % 60);
writepart(lastnode-1);

}

}

57

PART . H

#def ine verid "*** Par
#def ine MAXNODE 2500
#def ine MAXPIXELS 256
#def ine MAXLINES 3

#def ine nullset -1

#def ine TRUE 1

#def ine FALSE
#def ine BIGINT 10000
typedef char BOOLEAN;
typedef short VERTEX;

/* max. tree nodes
/* pixels per line
/* number of lines */

*/
*/

/* node in tree */

/* typedef int void;
compiler lacking one */

/ /* dummy void type if

/* Define Global Variables and Arrays */

#ifdef MAIN
short int sets ize[MAXNODE

]
[MAXLINES

]

;

short int setsizel [MAXNODE
]
[MAXLINES

]

;

unsigned int size [MAXNODE]; /* tree node sizes
unsigned int ace [MAXNODE]; /* cost funct track
int table [MAXNODE]

;

VERTEX Opt [MAXNODE];
int KLimit, lines, npix;/* Case Size */

*/

ace

#else
extern short int setsize [] [MAXLINES] ;

extern short int setsizel [] [MAXLINES
] ;

extern unsigned int size[];/* node sizes */
extern unsigned int acc[];/* c.f. track ace. */

extern int table[];
extern VERTEX opt

[]

;

extern int
#endif

KLimit, lines, npix;

58

INITIAL.

C

#include <stdio.h>
tinclude <string.h>
#include "part.h"

/* Parse Input Arguments */

FILE *initialise (argc, argv)

int argc;
char *argv[]

;

{

char imagef ile[64] , *strcpy();
FILE *infile;
void exit(), usage() /

valerr(), err();

if (argc> 1

)

if (strcmp(argv[1]

,

" /h")==0
|

|argc>5) usage (argv[])

;

switch(argc
)

{

case 5

case 4

case 3

case 2

default

:

KLimit = atoi(argv[4]);

lines = atoi (argv[3]);

npix = atoi(argv [2]);

(void) strcpy(imagef ile, argv[l]);

}

switch(argc
)

{

case 1: (void) fprintf (stderr, " Input
f ilename

: \t\t ");

(void) scanf("%s", imagef ile);
case 2: (void) fprintf (stderr , "Line length:\t\t

);
(void) scanf("%d", Snpix);
case 3: (void) fprintf (stderr ," Segmentation

lines : \t")

;

(void) scanf("%d", &lines);
case 4: (void) fprintf (stderr , "Enter KLimit

value :\t")

;

(void) scanf("%d", &KLimit);
}

59

}

infile = f open (iraagef ile, "r+b")

;

if (inf ile==NULL) err ("Unable to open input
file. ")

;

if (npix<l
1

! npix>MAXPIXELS)
err (" Invalid number of pixels");

if (lines >MAXLINES \\ lines<l)
err ("Invalid number of lines");

if (KLimit<l !! KLimit>4)
err ("Invalid KLimit");

(void) unlink("tracks .b")

;

return(infile)

;

void usage (argv)
char *argv;

{

(void) printf ("\tusage: %s [input] [pixels] [lines]
[KLimit]\n", argv);

}

void err (arg)
char *arg;

{

(void) printf ("%s\007\n", arg);
}

60

GENNODE . C

#include "part.h"
int node=0;

VERTEX GenerateNodes
(

)

{

register int i, j;
void Gen()

;

/* Initialise setsize */

for (i=0;i<MAXNODE;i++)
for

(j=0; j<lines; j++)
setsizel [i] [j] = setsize[i] [j] = nullset;

/* Generate tracks */

f or (i=l ; i<npix; i++)

{

setsize[node
]

[]
= i;

Gen (, i
)

;

}

/* Fill in node tables */

for (i=0; i< lines; i++)
for

(
j=l

;
j <node; j++

)

if(setsize[j]
[i] == nullset)

setsize[j][i] = setsize[j-l][i];

for (i=0; i< lines; i++

)

for
(j=0; j <node; j++

)

setsizel[j
]
[i]=setsize[j

]
[i]+l;

for (i=0; i<node; i++)
s i z e [i]

= ;

for (i=0; i<node; i++)
for

(j=0; j < lines; j++

)

size[i] = setsize[i][j] + size[i];

return (node)

;

61

void Gen (LineNumber , BinNumber)
int LineNumber, BinNumber;
{

register int i, j;
void err

()

;

if (node >= MAXNODE) err ("Too many nodes!");

LineNumber++;
for (i = -KLimit ; i<=KLimit; i++

)

{

j = BinNumber+i;
if (j > && j < npix)

{

setsize[node
]
[LineNumber] = j;

if (LineNumber == lines-1)
node++;

else
Gen (LineNumber, j);

62

UPDATE . C

tinclude <stdio.h>
#include "part.h"

void update(lastnode, infile)
int lastnode;
FILE *infile;
{

register int i, j;
unsigned char buf fer [MAXPIXELS]

;

int weight [MAXLINES] [MAXPIXELS]

;

for(j=0; j<lines; j++
)

{

if (f read (buf f er , l,npix,infile)==0) return;
for(i=0; i<npix; i++

)

weight[j][i] = (int) buffer[i];
}

/* set up signal estimate ace */
for (i=0; i< lastnode; i++

)

acc[i
] =0;

for (i=0; i< lastnode; i++)
for

(j=0; j < lines; j++

)

acc[i]+=weight [
j][setsize[i][j]];

/* set up table */
for(j=0; j<lines; j++

)

for(i=l; i<npix; i++
)

weight
[j]

[i]+=weight
[j]

[i-1
] ;

for(i=0; i<lastnode; i++
)

table[i]=l;
for (i=0; i< lastnode; i++)

for
(j=0; j < lines; j++)
table [i]+=weight[j][setsize[i][j]-l];

63

PARTIT.C

#include "part.h"
#include <stdio.h>
void partition(nodecount

)

int nodecount;
{

register int i, j , c;

BOOLEAN status;
int costfMAXNODE]

;

FILE *fp, *fopen()

;

int minval ; costfunction()

;

for (i=0; i< nodecount ; i++)

{

cost[i] = BIGINT;
opt[i] = null set;

}

for (i=l ; i< nodecount ; i++

)

{

for(j=0; j<i; j++
)

{

status=TRUE;
for(c=0;c<lines;c++)

if(setsize[i] fc]<=setsizelfj
]
[c]

)

{

status=FALSE;
break;
}

if (status)
{

c = costfunction (i, j) + costf j];
if

((costf i]) >= c
)

{

costf i] = c;

optfi] = j;

}

}

}

int costf unction(i, j) /* cost of segment */

VERTEX i, j;

{

register int icost;
int COST;
icost = (int) (tablef i]-table[j]

) *6; /*threshold*/
icost /= (int) (sizef i

] -sizef j])

;

return(icost - (int) accfi]);

}

64

LIBRARY.

C

tinclude <stdio.h>
#include "part.h"

void writepart(node) /* write partition */

VERTEX node;

{

register int i, j;
unsigned int bitmap [MAXLINES

]
[MAXPIXELS

]

;

FILE *outfile;

for(i=0; i<lines; i++
)

for(j=0; j<npix; j++)

bitmap[i] [j] = 0; /* bitmap is
gray scale black */

node = opt [node];
while(node != nullset

)

{

for(i=0; i<lines; i + +
)

/* pixel quantization for the output
image is 8 bits/pixel, with the
gray scale running from (black)
to 255 (white) */

bitmap[i]
[setsize[node

]
[i]

] = 255;
node = opt [node];

}

outfile = fopen("tracks .b" , "a+b")

;

for (i=0; i< lines ; i++

)

(void) fwrite(bitmap [i]

,

I, npix, outfile)

;

(void) f close(outf ile)

;

return;

65

APPENDIX B: HOUGH TRANSFORM SOURCE CODE

HOUGH . FOR

program hough
byte b_image(256) , r_image(256

)

integer counter, u(256) ,max,x_int (256,256)
integer gray_level, h_theta(256) , h_rho(2 56

)

integer i_image(256,256) ,accum(256,256) ,it,ir
real xO

,
yO , rho(256) ,x(256, 256), pi/3. 1415926/

real theta (256) , delta_theta, rho_max, rho_0 ,delta_rho, factor

open (unit =1 , name= 'test . dat

'

/ status='old' ,access=' direct'

,

*recordsize=64)
open (unit =2 , name= ' testh .dat

'

, status= ' new' ,access=' direct
'

,

*recordsize=64

)

open (unit =3 , name= ' testr .dat
'

, statu s = 'new' ,access=' direct'

,

*recordsize=64)

c ***Begin Main Program***
c Read in test image data,

do j=l,256
read(l'j) b_image
do i=l,256

i_image (i , j
) =b_image (i

)

enddo
enddo

do j=l,256
do i=l,256
if (i_image(i, j) . LT.) i_image(i, j)=i_image(i, j)+256
enddo

enddo

c ***hough transform***
call h(i_image, accum, theta, delta_r ho, rho_0 , xO, yO

)

max=accum(1,1)
min=accum(1,1)
do j=l,256

do i=l,256
if (accum (i, j) .GT.max) max=accum(i, j

)

if (accum (i, j) . LT.min) min=accum(i, j

)

enddo
enddo

66

c Normalize accumulator array for display
c on IM-4000 Image Manager.

factor=24 3 . 0/ (max-min)
do j =1,256

do i=l,256
accum(i, j)=jnint (

(accum(i , j)-min) *f actor

)

if (accum(i, j) .GT. 127) then
b_image(i) =accum(i, j) -2 5 6

else
b_image(i)=accum(i, j

)

endif
enddo
write (2' j) b_image

enddo

c ***reconstruct from hough transform***
call r (ac cum, max, h_theta, h_rho, rho, delta_rho,

* rho_0 , xO
,
yO , x_int

)

do j =1,256
do i=l,256

if (x_int(i, j) .GT. 127) x_int(i, j)=x_int (i, j
) -256

r_image (i) =x_int (i , j

)

enddo
write (

3
' j) r_image

enddo
end

c ***End Main Program***

Q **
subroutine h(i_image, accum, theta,delta_rho, rho_0 , xO

,
yO

)

dimension i_image(256 , 256

)

integer accum(256 , 256

)

integer gray_level
real theta(256)
real x0,y0
real pi/3.1415926/

c Initialize the accumulator array to zero.
do j =1,256

do i=l,256
accum(i, j

) =0
enddo

enddo

c Increment theta from to pi radians.
delta_theta=pi/ float (2 56

)

do i=l,256
theta(i)=f loat (i-1) *delta_theta

enddo

67

c Fix the center of image as the origin.
rho_max=sgrt(f loat (256*25 6) +f loat (256*25 6)

)

rho_0=rho_max/2 .

delta_rho=rho_raax/f loat (256

)

xO=f loat(256/2)
y0=float(256/2)

do iy=l,256
y=iy
do ix=l,256

gray_level=i_image(ix, iy

)

if (gray_level . LE .
)
go to 5

x=ix
do it=l,256

c Hough Transformation Eguation.
rho=(x-xO)*cos(theta(it)) +(yO-y) *sin(theta(it

)

)

r= (rho+rho_0) /delta_rho
ir= jnint (r

)

accum(it,ir)=accum(it,ir)+l
enddo

5 continue
enddo

enddo
return
end

Q ***
subroutine r (ace urn, max, h_theta, h_rho, rho, delta_rho,

* rho_0
/
xO

,
yO , x_int

)

integer accum(256,256) ,max, h_theta(256) , h_rho(25 6

)

integer x_int (256,256) , u (256) ,counter
real rho (256) , delta_rho, rho_0 , xO

,
yO

real x(256 , 256) ,pi/3 . 1415926/

counter=0
do j=l,256

do i=l,256
if (accum(i, j) . GE .max) then

cou nter= counter+1
c Determine the theta and rho locations
c in the accumulator array with the
c highest count value.

h_theta(counter) =i
h_rho (counter)

=

j

endif
enddo

enddo

68

do j=l, counter
rho

(j
) =h_rho

(j
) *delta_rho-rho_0

enddo

do j=l, counter
do i=l,256

Reconstruction Equation.
x(i,j)=xO+

* (rho(j)-(yO-i)*sin((h_theta(j)-l)*pi/2 56))/
* cos((h_theta(j)-l)*pi/256)

x_int(i, j)=jnint(x(i, j)

)

enddo
enddo

do j=l / 256
do 1=1, counter

u(l)=x_int(j / l)
enddo

do m=l , counter
do k=l,256

if (k.EQ.u(m)) x_int(k, j)=243
enddo

enddo
enddo

do j= 1,256
do i=l,256

if (x_int(i / j) .NE.24 3) x_int(i, j
)=0

enddo
enddo
return
end

69

APPENDIX C. HEURISTIC SEARCH SOURCE CODE

HS.FOR

program hs2
byte b_image (256 , 256

)

integer sample_image(256,256) , clust_image(256,256),
* counter/0/, s_peak_row(256) , s_peak_col (2 56)

,

* c_peak_row(256) , c_peak_col (256) ,ra, n,
* new_mark_row, new_mark_col , min_m,min_n,
* minimum_c_n, Nc , row_dist , col_dist
real*

4

d(256,256), total_cost (25 6) ,present_cost

,

* min, factor , half_dist ,d_clust (256) ,

* d_clust_total , Dc (256) , minimum, row_dist_sq,
* col_dist_sq

open(unit=l , name= ' testper5 . dat
'

,status='old'

,

* access= ' direct ', recordsize=64

)

c ***Begin Main Program***
c Read in test image.

do i=l,256
read(1

' i) (b_image(i,j),j=l,256)
enddo

c Convert input 256x256 byte image into
c a 256x256 integer image.

call convert (b_image, sample_image, clust_image

)

c Locate peaks in input image,
do i=l,256

do j=l,256
if (sample_image(i, j) . NE .) then

counter=counter+l
s_peak_row(counter) =i
c_peak_row(counter) =i
s_peak_col (counter) =

j

c_peak_col (counter)=

j

endif
enddo

enddo

c Calculate distances between peaks.
call dist (counter, c_peak_row, c_peak_col , d)

70

c Start Main Program Loop,
do i=l, counter

j= (counter+1) -i
call centroid(i, j ,d, counter , mi n, s_peak_row,

* s_peak_col , c_peak_row, c_peak_col , Dc

)

call cost
(j , Dc,present_cost

)

total_cost
(j)=present_cost

print 1 , j , total_cost
(j

)

1 format (lx, ' total_cost (' ,11, '

)
= '

, f 8 . 4
)

enddo

call min_cost (total_cost , counter)
end

c ***End Main Program***

c ***
subroutine convert (b_image, sample_image, clust_image

)

byte b_image(256 , 256

)

integer sample_image (256,256) , clust_image(2 56,256)
real*4 factor

factor =243.0/2 .0

do i=l,256
do j=l,256

if (b_image(i, j) .LT. 0)then
sample_image (i , j

) =b_image (i , j) +256
clust_image(i, j

) =sample_image(i , j

)

elseif (b_image(i,j).GE.0)then
sample_image (i , j

) =b_image (i , j

)

clust_image (i , j
) =sample_image (i , j

)

endif
sample_image(i , j

)
= jnint (sample_image(i, j) /factor

)

clust_image(i, j)= jnint (clust_image(i,j)/factor)
enddo

enddo
return
end

subroutine dist (counter, c_peak_row, c_peak_col ,d)
integer counter, c_peak_row(256) , c_peak_col (256

)

real*4 d(256,256)

do m=l, counter
do n=l, counter
if (n.NE.m)then

d(m, n)=sgrt (f loat
(

(c_peak_row(n) -c_peak_row(m)) **2

)

* +f loat
(

(c_peak_col (n) -c_peak_col (m)) **2
)

)

endif
enddo

enddo

71

return
end

Q ***
subroutine centroid(i, j , d, counter , min, s_peak_row,

* s_peak_col , c_peak_row, c_peak_col , Dc

)

integer i, j , counter , s_peak_row(256) , s_peak_col (256) ,

* c_peak_row(256) , c_peak_col (25 6

)

real*4 d(256 , 256) ,min, Dc (256

)

if
(
j . EQ. counter) then
Dc(j)=0.

else
call inin_dist (d, counter, min, min_m,min_n

)

c Determine midpoint between two
c closest peaks.

call new_marker (counter , min, mi n_m, mi n_n,
* c_peak_row, c_peak_col , half_dist

,

* new_mark_row, new_mark_col

)

call clust_array_adj (counter, c_peak_row,
* c_peak_col , new_mark_row,
* new_mark_col ,min_m,min_n)

call dist_clust
(j , counter, s_peak_row, s_peak_col

,

* c_peak_row, c_peak_col , Dc

)

c Calculate distances in adjusted image.
call dist (counter, c_peak_row, c_peak_col ,d

)

endif
return
end

10

subroutine min_dist (d, counter , min, min_m,min_n
integer counter ,min_m,min_n
real*4 d(256 , 256) ,min

do m=l, counter
do n=l, counter

if (d(m,n) .NE.0)then
min=d(m, n

)

goto 10
endif

enddo
enddo
continue

72

do m=l , counter
do n=l, counter

if (d(m,n) .NE.0)then
if (d(m, n) .LE.min)then

min=d(m, n

)

min_m=m
min_n=n

endif
endif

enddo
enddo
return
end

subroutine new_marker (counter , rain, mi n_m, mi n_n,

* c_peak_row, c_peak_col , half_dist

,

* new_mark_row, new_mark_col

)

integer counter ,min_m,min_n, c_peak_row(256) ,

* c_peak_col (256) , m, n , new_mark_row, new_mark_col
realM min, half_dist

m=min_m
n=min_n
min_ra=n
min_n=m
half_dist=0 . 5*rain
if (c_peak_row(min_ra) . EQ. c_peak_row(min_n))then

new_mark_row=c_peak_row (min_m

)

new_mark_col= jnint (half_dist+
* float (c_peak_col (min_m)

)

)

elseif (c_peak_col (rain_m) . EQ. c_peak_col (min_n))then
new_mark_col=c_peak_col (min_m

)

new_mark_row= jnint (half_dist+
* float (c_peak_row(min_m)

)

)

elseif (c_peak_col (min_m) .LT. c_peak_col (min_n))then
new_mark_row= jnint (float (c_peak_row(min_m)

)

* + float (c_peak_row(min_n)
* -c_peak_row(min_m)) /2 .

)

new_mark_col= jnint (half_dist+
* float (c_peak_col (rain_m)

)

)

elseif (c_peak_col (min_m) .GT. c_peak_col (min_n))then
new_mark_row= jnint (float (c_peak_row(min_m)

)

* + float (c_peak_row(min_n

)

* -c_peak_row(min_m)) /2 .
)

new_mark_col= jnint (float (c_peak_col (min_m)

)

* -half_dist)
endif
return
end

73

subroutine clust_array_adj (counter, c_peak_row,

c_peak_col , new_mark_row,
new_mark_col , min_m, min_n

)

integer counter, c_peak_row(256) , c_peak_col (256)

,

* new_mark_row
/ new_raark_col , min_m,min_n,

* A,B,C,D,E,F

do n=l, counter
A=c_peak_row (n

)

B=c_peak_row (rain_m

)

C=c_peak_row (min_n

)

D=c_peak_col (n

)

E=c_peak_col (min_m)
F=c_peak_col (min_n

)

if ((
(A.EQ.3) .OR. (A.EQ.C)) .AND. ((D . EQ . E) . OR

.
(D . EQ . F))

)then
c_peak_row(n) =new_mark_row
c_peak_col (n) =new_mark_col

endif
enddo
return
end

(-• ***
subroutine dist_clust (j, counter, s_peak_row, s_peak_col

,

* c_peak_row, c_peak_col , Dc)

integer j , counter, s_peak_row(256) , s_peak_col (256)

,

c_peak_row(256) , c_peak_col (256)

,

row_dist , col_dist
real* 4 d_clust(2 56) , d_clust_total , Dc (256)

,

row_dist_sq, col_dist_sq

d_clust_totai=0 .

do n=l, counter
row_dist=s_peak_row(n) -c_peak_row(n)
col_dist=s_peak_col (n) -c_peak_col (n)
row_dist_sq=f loat (row_dist*row_dist

)

co l_dist_sq= float (col_dist*col_dist

)

d_clust (n)=sqrt (row_dist_sq+col_dist_sq)
d_clust_total=d_clust (n)+d_clust_total

enddo

Dc(j)=d_clust_total
return
end

74

subroutine cost

(j , Dc,present_cost

)

integer j,Nc
real* 4 Dc(256) ,present_cost , Kn/1 . 0/,Kd/0. 1/
Nc =

j

present_cost=Kn*f loat (Nc)+Kd*Dc(j

)

return
end

subroutine min_cost (total_cost , counter

)

integer counter ,minimum_c_n
real*4 total_cost(256), minimum
minimum=total_cost (counter

)

do n = l, counter
if (total_cost (n) . LE .minimum) then

minimum=total_cost (n)
minimum_c_n=n

endif
enddo
return
end

75

APPENDIX D: MULTIPLY. FOR SOURCE CODE

MULTIPLY. FOR
program multiply

c This program takes tracks. b, the fixed length 128x512
c byte output file from GTT, and converts it into a
c 256x256 byte array. Then the input LOFARGRAM, also a
c 256x256 byte array, is multiplied with tracks. b. The
c resultant image is identical to tracks. b with the
c exception that each non-zero pixel location holds the
c value of beam00.bin at that i,j location. The output
c file, OUTIMG.DAT, is used as input for the hough
c transform program.

byte bl_image(128,512) , b2_image (25 6 , 256)

,

* b3_image(256,256) , b4_image(256 , 256)

open(unit=l , name= ' tracks .

b
'

,status='old' ,access='direct'

,

*recordsize=12 8,maxrec=12 8

)

open (unit =2 , name= ' beamOO .bin' , statu s= ' old
'

,

*access='direct' , recordsize=64 ,maxrec=256

)

open(unit=3, file= ' outimg.dat
'

, status= ' new
'

,

*access='direct' , recordsize=64 ,maxrec=256

)

do i=l, 128
read(1

' i)
(bl_image(i,j),j=l,512)

do j=l,256
b2_image((i*2) -1 , j) =bl_image(i , j

)

enddo

do j=257,512
b2_image(i*2,j-256) =bl_image(i , j

)

enddo
enddo

do i=l,256
read(2

' i)
(b3_image(i,j),j=l,256)

enddo

76

do i=l,256
do j=l,256

if (b2_image(i, j) .NE.O) then
b4_image (i , j

) =b3_image (i , j

)

else
b4_image(i, j)=0

endif
enddo

enddo

do i=l,256
write (

3
' i)

(b4_image(i,j),j=l,256)
end do

close(unit=l

)

close (unit = 2)

close (unit = 3
)

end

77

APPENDIX E: HOUGH TRANSFORM (GRAY SCALE) SOURCE CODE

HOUGH_G . FOR

program hough_g

byte b_image(2 56) , out_image(25 6,256) , r_image(256

)

integer count er,u(256) , max,x_int (256,256)

,

* gray_level,h_theta(256) ,h_rho(256)

,

* i_image(2 56,2 56) , accum(256, 256)

,

* accum_norm(256, 256), it, ir, test_image (256,256)
real xO

,
yO , rho(2 56) ,x(256, 256), pi /3. 1415926/,

* theta(256) , delta_theta, rho_max, rho_0

,

* delta_rho, factor

open (unit=l, name= ' outimg.dat
'
,status='old'

,

* access= ' direct ', recordsize=64

)

open(unit =2 , name=
'

gttouthl6 .dat
'

, status = 'new'

,

* access= ' direct ', recordsize=64

)

open(unit =3 , name=
'

gttoutr 16 .dat
'

,status='new'

,

* access= ' direct ', recordsize=64

)

open(unit=4, name= 'gtthsl6.dat' ,status='new'

,

* access= ' direct ', recordsize=64

)

c ***Begin Main Program***
c Read in test image data,

do j=l,256
read(l'j) b_image
do i=l,256

i_image (i , j
) =b_image (i

)

enddo
enddo

do j=l,256
do i=l,256
if (i_image(i, j) . LT.) i_image(i, j)=i_image(i, j)+256
enddo

enddo

78

c ***hough transform***
call h(i_image,accum, theta,delta_rho, rho_0 , xO,yO

)

raax=accum(1,1)
min=accum(1,1)
do j= 1,2 56

do i=l,256
if (accum(i, j) .GT.max) max=accum(i, j

)

if (accura(i, j) .LT.min) min=accum(i, j

)

enddo
enddo

c Normalize accumulator array for display
c on IM-4000 Image Manager,

factor =2 4 3 . 0/ (max-min)
do j=l,256

do i=l,256
accum_norm(i, j)=jnint((accum(i, j)-min)*factor)
if (accum_norm(i, j) .GT. 127) then

b_image (i) =accum_norm(i , j
) -256

else
b_image (i) =accum_norm (i , j

)

endif
enddo
write(2'j) b_image

enddo

c ***reconstruct from hough transform***
call r(accum, accum_norm,max, h_theta, h_rho, rho,

delta_rho, rho_0 , xO
,
yO , x_int

)

do j=l,256
do i=l,256

if (x_int(i, j) . GT. 12 7) x_int(i, j)=x_int(i, j)-256
r_image (i) =x_int (i , j

)

enddo
write (

3
' j) r_image

enddo
end
End Main Program

**
subroutine h (i_image, accum, theta,delta_rho, rho_0 , xO

,
yO

)

integer i_image(256,256), accum(256,256)
,
gray_level

real theta(256) ,x0,y0, pi/3. 1415926/

Increment theta from to pi radians.
delta_theta=pi/f loat(25 6)
do i=l,256

theta(i)=f loat (i-1) *delta_theta
enddo

*

79

Fix the center of image as the origin.
rho_max=sqrt (float (2 56*256)+float(256*256)

)

rho_0=rho_max/2 .

delta_rho=rho_max/f loat (256

)

xO=f loat(256/2)
yO=f loat(256/2)
do iy=l,256

y=iy
do ix=l ,256

gray_level=i_image (ix, iy

)

if
(
gray_level . LE .

)
go to 5

x=ix
do it=l,256

Hough Transformation Equation.
rho=(x-xO) *cos(theta(it))+(yO-y) *sin(theta(it)

)

r=(rho+rho_0) /delta_rho
ir= jnint (r

)

accum(it,ir)=accum(it,ir) +gray_level
enddo
continue

enddo
enddo
return
end

subroutine r (accum, accum_norm,max, h_theta, h_rho, rho,

delta_rho, rho_0 , xO
,
yO, x_int

)

byte out_image(256, 256

)

integer accum (256,256) , accum_norm(256,256), max, max_th,
h_theta(25 6) ,h_rho(256) ,x_int(25 6, 256),u(256),

* counter , test_image(256, 256

)

real rho (256) ,delta_rho, rho_0 ,x0,y0,x(256,256)

,

* pi/3. 1415926/

max_th= jnint (. 16*max)
counter=0
do j=l,256

do i=l,256
if (accum(i, j) . GE .max_th) then

counter=counter+l
test_image (i , j

) =accum_norm(i , j

)

c Determine the theta and rho locations
c in the accumulator array with the
c highest count value.

h_theta(counter) =i
h_rho (counter) = j

endif
enddo

enddo

80

*

*

*

do i=l,256
do j =1,256

if (test_image(i, j) .GT. 12 7)then
out_image (i , j

) =test_image (i , j
) -256

else
out_image (i , j

) =test_image (i , j

)

end if
enddo

enddo

do i=l,256
write (

4
' i)

(out_image(i,j),j=l,256)
enddo

do j=l, counter
rho(j

) =h_rho(j
) *delta_rho-rho_0

enddo

do j=l, counter
do i=l , 256

Reconstruction Equation.
x(i,j)=xO+

(rho(j)-(yO-i)*sin((h_theta(j)-l)*pi/256))/
* cos((h_theta(j)-l)*pi/256)

x_int(i, j)=jnint(x(i, j)

)

enddo
enddo

do j =1,25 6

do 1=1, counter
u(l)=x_int(j,l)

enddo

do m=l, counter
do k=l,256

if (k.EQ.u(m)) x_int (k, j
) =243

enddo
enddo

enddo

do j=l,256
do i=l,256

if (x_int(i, j) .NE.243) x_int(i, j
)=0

enddo
enddo
return
end

81

LIST OF REFERENCES

1. Ross, Alexander J., Automated LOFAR Tracking an Analysis
of Two Algorithms , Master's Thesis, Naval Postgraduate
School, Monterey, California, September 1990.

2. Wang, Chen-Shan, Moving Object Detection by Track
Analysis , Master's Thesis, Naval Postgraduate School,
Monterey, California, September, 1990.

3. Wu, L.J. and Curtis, T.E., Practical Graph Partitioning
Algorithms for SONAR , Proceedings of the 1987 NSUA
Conference.

4. Jensen, P. A., Optimum Network Partitioning , Operation
Research, Vol. 19, pp. 916-932.

5. McConnell, R.A., Draft Notes on "Graph Theoretic
Tracker", Naval Research Laboratory, Washington, D.C., 1989.

6. Duda, R.O., and Hart, P.E., Use of Hough Transformation
to Detect Lines and Curves in Pictures , Communication of the
ACM, Vol. 15, No. 1, pp. 11-15, January, 1972.

7. Davis, L.S., Hierarchical Generalized Hough Transforms
and Line-Segment Based Generalized Hough Transforms , Pattern
Recognition, Vol. 15, No. 4, pp. 277-285, 1982.

8. Cowart, A.E., Snyder, W.E. and Ruedger, W.H., The
Detection of Unresolved Targets using the Hough Transform ,

Computer Vision, Graphics, and Image Processing, Vol. 21,

pp. 222-238, July, 1982.

9. IM-4000 Image Manager Manual , METSAT, Inc., 515 South
Howes, Fort Collins, CO 80521, 1988.

10. LAS Users 's Manual Version 4.0 , Goddard Space Flight
Center, Greenbelt, Maryland, September, 1987.

11. Chen,Tung-Sheng, Simulated Annealing in Sonar Track
Detection , Master's Thesis, Naval Postgraduate School,
Monterey, California, December, 1990.

82

INITIAL DISTRIBUTION LIST

No. copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2

Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code EC 1

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5100

4. Professor Chin-Lee, Code EC/Le 2

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5100

5. Professor Murali Tummala, Code EC/Tu 1

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5100

6. LT Vance A. Brahosky, USN 4

PSC 473 Box 8-13
FPO AP 96349-1400

7

.

LT A.J. Ross, USN 1

VT 86 NAS Pensacola
Pensacola, FL 32508

8. Paul A. Jensen 1

The University of Texas at Austin
College of Engineering
Department of Mechanical Engineering
Austin, TX 78712-1063

83

Thesis
B798225 Brahosky
c.l A combinatorial

approach to automated
LOFARGRAM analysis.

c,

Thesis

B798225 Brahosky
i A combinatorial

approach to automated

LOFARGRAM analysis.

